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ABSTRACT
Panoptic Scene Graph Generation (PSG) presents pixel-wise in-
stance detection and localization, leading to comprehensive and
precise scene graphs. Current methods employ conventional Scene
Graph Generation (SGG) frameworks to solve the PSG problem,
neglecting the fundamental differences between bounding boxes
and masks, i.e., bounding boxes are allowed overlap but masks are
not. Since segmentation from the panoptic head has deviations,
non-overlapping masks may not afford complete instance informa-
tion. Subsequently, in the training phase, incomplete segmented
instances may not be well-aligned to annotated ones, causing mis-
matched relations and insufficient training. During the inference
phase, incomplete segmentation leads to incomplete scene graph
prediction. To alleviate these problems, we construct a novel two-
stage framework for the PSG problem. In the training phase, we
design a proposal matching strategy, which replaces deterministic
segmentation results with proposals extracted from the off-the-
shelf panoptic head for label alignment, thereby ensuring the all-
matching of training samples. In the inference phase, we present an
innovative concept of employing relation predictions to constrain
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segmentation and design a relation-constrained segmentation algo-
rithm. By reconstructing the process of generating segmentation
results from proposals using predicted relation results, the algo-
rithm recovers more valid instances and predicts more complete
scene graphs. The experimental results show overall superiority,
effectiveness, and robustness against adversarial attacks. Code is
available at https://github.com/flyfaerss/RCpsg.
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1 INTRODUCTION
A scene graph (SG) provides a comprehensive representation that
encompasses all instances and their interrelationships. By condens-
ing visual information into a graph structure, scene graphs facilitate
the effective solution of complex computer vision tasks, such as
visual question answering (VQA)[39, 53], image retrieval[15, 43],
image captioning[26, 47] and image generation[1, 14].

Scene graph generation (SGG) is often implemented in two
stages, the first one conducts the instance detection, and the second
one predicts relations between composited object pairs. [36] designs
a unified two-stage SGG codebase (Figure 1(a)), which becomes the
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Figure 1: (a) The pipeline of the common two-stage SGG
framework[36]. Non-instance for background causes in-
complete scene graph prediction. (b) The pipeline of cur-
rent two-stage PSG framework. Incomplete segmentation
results from the panoptic head provide limited instances
and incomplete scene graph prediction. (c) Our proposed
framework for PSG. We focus on the flexibility of masks
thus generating representative instance proposals. Relation-
Constrained (RC) reasoning provides amore complete scene
graph (e.g. complemented instances and relations (green and
purple entities) in the scene graph).

most popular SGG framework. Firstly, the model obtains the detec-
tion results through the detector and extracts the initial features of
proposals covering instances and relations from prediction results.
Secondly, the initial features are passed through a message-passing
network[16, 31–33, 37, 49], to get the scene graph prediction, incor-
porated with a de-biased module[3, 10, 22, 25, 52]. Recent work[46]
presents a novel scene graph generation task focusing on panop-
tic scene understanding, named Panoptic Scene Graph Generation
(PSG). It provides more accurate instance locations via pixel-wise
form and all-contents scene understanding including backgrounds
like tree-merged and sky-other-merged in Figure 1(b)(c).

To implement scene graph generation under panoptic scenes,
existing works[42, 46] accordingly use the common two-stage SGG
framework to solve the PSG problem. That is, they first use a panop-
tic head (e.g. Panoptic FPN[17]) for segmentation then extract ini-
tial features from the segmentation results, which are fed into a
message-passing network for relation prediction. However, this
framework is not suitable for the PSG task. As shown in Figure 1
(b), due to the non-overlap requirement of the masks, it is difficult
for the panoptic head to predict complete segmentation results.
In one case, smaller targets can be easily covered by larger tar-
gets with higher confidence (e.g. sky-other-merged). In another case,
hard samples might be discarded due to low-confidence (e.g. skate-
board ). Under this circumstance, in the training phase, incomplete
segmentation results impede the model’s ability to align with all
ground truth instances, causing unaligned instances to be discarded.
Consequently, associated relation samples are excluded from the
training process, leading to a waste of training samples. In the in-
ference phase, incomplete segmentations prevent the model from

predicting relations related to the undetected instances, resulting
in incomplete scene graph predictions.

To alleviate these problems caused by the masks, we design a
new two-stage PSG framework. In this framework, we design two
different pipelines for the training and the inference phases. Dur-
ing the training phase, we propose a proposal matching scheme
for label alignment. We extract high-confidence proposals from
the existing off-the-shelf panoptic head, and then using them for
matching. Since the number of proposals is much larger than the
number of ground truth instances, this ensures full utilization of
training samples. Additionally, with the help of the complete pro-
posal matching scheme, we can further simplify the initial feature
extraction. We directly extract the proposal features instead of the
RoI features, which not only reduces a large amount of compu-
tational overhead but also alleviates the cumulative errors of the
two-stage model, making the model training more effective and
reliable. In the inference phase, we creatively propose a realiza-
tion of using relation predictions to constrain segmentation results,
thereby obtaining more complete segmentation results and scene
graph predictions. First, we perform pairwise relation prediction for
all high-confidence proposals. Then, we calculate themask coverage
priority based on the highest relation confidence for each proposal,
and forcibly recover proposals with high-confidence relation. This
relation-priority masking method allows the model to focus more
on instances with interaction information, making it more capable
of recovering reliable small targets or low-confidence proposals,
and thus obtaining more complete scene graph predictions.

The main contributions are summarized as follows:
• We analyze the incompatibility of the common two-stage
SGG framework on solving PSG problem, indicating prob-
lems of the waste of training samples and incomplete scene
graph prediction caused by the non-overlap masks.

• We proposed a method of using the off-the-shelf panop-
tic head’s proposals instead of deterministic segmentation
results for label alignment and RoI feature extraction. It ef-
fectively utilizes the representative pre-trained features of
dedicated models, meanwhile ensuring the full utilization of
the training samples.

• Wemake the first step in considering the guidance role of the
relations for instance understanding. A novel algorithm is
proposed to simultaneously achieve panoptic segmentation
and scene graph prediction under relation constraints.

• The proposed framework achieves outstanding superiority
on the PSG dataset.

2 RELATEDWORK
Scene Graph Generation. SGG aims to use a comprehensive
graph structure to represent a scene image. Early works pay more
attention to exploring different networks, such as GNN[27, 34],
CRF[7, 8], and RNN/LSTM[37, 49], to model the message passing
mechanisms between the entities and predicates. Follow-up works
focus on extracting more powerful global contextual information.
[35] constraints the rationality of the distribution of the scene
graph structure by introducing a global energy value. [24, 31, 32]
are to deeply mine the attributes of nodes on a graph-based net-
work and fully utilize their contextual information to achieve better
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Figure 2: Overview of the proposed framework. We design different pipelines for training and inference. 1) In the training, we
show a specific Proposal Extraction and Matching for PSG to extract proposals from the panoptic head for label alignment,
so as to fully utilize the training samples; 2) In the inference, we reconstruct the process of segmentation generation from
proposals with relation constraints, predicting more complete scene graphs by recovering more valid instances.
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Figure 3: Mismatching caused by directly using panoptic
head’s deterministic segmentation results.

feature representations. Recently, more research has shifted the at-
tention to the severe long-tail problem of SGG datasets, like Visual
Genome[19], Open Image[21] and GQA[13]. [36] proposes the first
solution for unbiased SGGmodel prediction. Most works mainly uti-
lize re-sample[9, 12] or re-weight[45, 48], and their variants[10, 38]
to alleviate biased prediction. Yang et al.[46] introduces a novel
SGG paradigm grounded in panoptic segmentation, named PSG.
The enhanced accuracy in localization and comprehensive instance
detection lead to a more complete scene graph. Nevertheless, the
conventional SGG framework is not directly applicable to PSG. Al-
though Wang et al.[42] provides a tailored solution that adeptly
leverages the feature extraction potential of the off-the-shelf panop-
tic head, they have yet to address the problem of non-overlap masks.
We consider the challenges posed by these masks and design a new
PSG framework, which significantly improves model performance.
Panoptic Segmentation. The panoptic segmentation unifies se-
mantic segmentation and instance segmentation tasks for holistic
scene understanding. Some works treat this problem as a joint task
that combines the best of specialized semantic and instance segmen-
tation architectures into a single framework[4, 17, 44]. However,
these methods will bring unnecessary model complexity by solving
surrogate sub-tasks to achieve the target task. Recently, researchers
make effort on a unified panoptic segmentation framework. Several
works[5, 6, 41, 51] use query to represent thing and stuff through
universal architectures based on Transformer[40] like DETR[2].
3 APPROACH
3.1 Problem Setting and Overview
Problem Setting. Given an image I, the task of panoptic
scene graph generation is to parse I into a scene graph G =

{Esub ,P, Eob j }, where Esub and Eob j denote the set of subject
and object entities and P represents the set of predicates. Typi-
cally, we can use two-stage methods to solve the PSG problem:
first conduct panoptic segmentation, then detect relations between
instances. In our framework, the goal of panoptic segmentation is
to extract instance proposals from the off-the-shelf panoptic head,
e.g.Mask2Former[5]. Each instance proposal provide four key infor-
mation: mask confidence (mc ), mask prediction (m), label prediction
(l ) and proposal feature (q). Then, in the second stage, all predicted
instance proposals should be matched to generate relation can-
didates and align corresponding relation annotations for relation
prediction. Finally, combining proposal segmentation results and
relation prediction results, we obtain a scene graph prediction.
Overview. In this paper, we design a new panoptic scene graph
generation framework to adapt to the flexibility and the non-overlap
of the masks, as shown in Figure 2. To this end, we divide the entire
framework into two parts: the training pipeline and the inference
pipeline, which have a little differences. In the training pipeline,
an image first goes through the off-the-shelf panoptic head, where
instance proposals are extracted from the MaskHead. Afterward,
these instance proposals are matched with ground truth instances
for label alignment. The matched instances are fed together into a
message-passing network (MPN), resulting in fine-tuned instance
features and relation features. Finally, classification results are ob-
tained through a classifier, followed by loss calculation and training.
In the inference pipeline, we obtain instance proposals using the
same operations as the training process. Then we extract the high-
confidence parts and input them into the message-passing network
to obtain prediction for instances and relations. Finally, we use the
predicted relation results to constrain the process of generating
panoptic segmentation results from instance proposals, ultimately
producing a more complete scene graph.

3.2 Difference Analysis between SGG and PSG
We start by analyzing the differences between SGG and PSG tasks
to understand the reasons behind our framework design. Obviously,
compared to the traditional SGG task, PSG uses masks to represent
the regions of each instance. This difference in region representation
has inspired the design of the framework.
Instance Matching in the Training Pipeline. Direct matching
is mostly common used in the two-stage SGG framework, which



MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Yang et al.

High-Confidence
Proposals

Original Panoptic SGG:

Relation-Constrained Panoptic SGG:

Pred. Segmentation

Relation 
Predictions

RCSeg
Algorithm

RoI Feature
Extraction MPN

Pred. Segmentation

person-1
holding

skis-1

climbing
snow

sky-other-merged over

person-1 holding skis-1

climbing snow

sky-other-merged over

carrying backpack

person-2 picking skis-2

Recover Scene Graph

Relation Rank:
1.person1-carrying-backpack
2.person2-picking-skis2

...

MPN

Figure 4: Differences between panoptic SGG schemes. The
relation-constrained method obtains more fine-grained seg-
mentations and complete scene graph predictions.

Step-by-Step Matching

Proposal Matching

Panoptic 
Head

1st Step: Pred. Segmentation

2nd Step: Rest Proposals

GT Segmentation
Matching

Rest GTs (if have)
Matching

Panoptic 
Head

All Proposals GT Segmentation

Matching

…
Figure 5: Diagram of two instance all-matching strategies.

directly employs the deterministic prediction results acquired from
the detector to align the ground truth labels. However, this match-
ing scheme is unsuitable for PSG. Owing to the non-overlap re-
quirement of the masks, the segmentation results predicted by the
panoptic head might be incomplete, resulting in a greater number
of ground truth instances than predicted ones. In this case, not only
can the unmatched ground truth instances not participate in train-
ing, but the relation annotations associatedwith these instances also
cannot be involved in the training process, resulting in the waste
of training samples. As shown in Figure 3 (left), the panoptic head
(Mask2Former, the same below) can’t predict mountain-merged,
skis, and backpack, where skis and backpack generate relation an-
notations through interactions with other instances, i.e., person-
picking-skis and person-carrying-backpack. In this way, during the
training stage, these relation samples cannot be matched and thus
are discarded. We statistic the sample utilization of direct matching
under the high-accuracy panoptic head, Mask2Former in Figure 3
(right), we still find that a large proportion of relation samples are
discarded in training, which hurt the model performance.
Scene Graph Prediction in the Inference Pipeline. In the two-
stage SGG framework, compared to the training pipeline, the infer-
ence process simply removes the instance matching process. The
message-passing network just predicts pairwise relations for all
instance proposals generated by the detector. In the PSG task, due
to the non-overlapping masks, this relation prediction mode is se-
verely limited by the panoptic segmentation results. As shown in
Figure 4 (top), due to the incomplete segmentation results obtained
by the panoptic head, instances such as skis and backpack are not
included in the input of the message-passing network, making it

Baseline Network s / image (SGG task) s / image (PSG task)

Motif 1.000 0.102
VCtree 1.690 0.132

SGTR / PSGFormer* 0.350 0.175

Table 1: Inference speed comparison of two-stage and one-
stage methods under both the SGG and the PSG tasks. * de-
notes the one-stage method. SGTR[23] and PSGFormer[46]
have similar backbones and relation prediction paradigms.

impossible to predict relations like person-picking-skis and person-
carrying-backpack. Since we cannot perform ground truth matching
during the inference phase, this prediction mode will inevitably
lead to incomplete scene graph predictions.
Inference Speed between Two-stage and One-stage Meth-
ods. The improvement in inference speed brought by the non-
overlapping masks is a reason why we focus on the two-stage
framework design. In the SGG task, since the bounding boxes of
instances are allowed to overlap, we can generate a large number
of instance proposals during the inference phase, which is exact
the fundamental reason why the inference speed of the two-stage
method in SGG tasks is much slower than that of the one-stage
method. As shown in Table 1, the one-stage method SGTR is sig-
nificantly faster than the two-stage methods, Motif and VCTree.
However, in the PSG task, the situation is reversed. Due to the non-
overlapping masks, the number of instances is inherently limited.
This constraint ensures that the message-passing network consis-
tently maintains a smaller magnitude of relation candidates for
prediction. In contrast, the one-stage method still needs to process
a specific number of instance queries. As a result, Table 1 demon-
strates that the inference speed of the Motif and VCTree methods
outperform the PSGFormer in the PSG task.

3.3 Training with Full Samples
In this section, we strive to address the waste of training sample
brought about by direct instance matching. To avoid this problem,
we further utilize the panoptic head rather than only using deter-
ministic segmentation results. We extract more instance proposals
from the MaskHead, a common component in most panoptic heads,
which conducts mask feature extraction and mask prediction for
each proposal. Then we filter useless proposals to reduce model
computation according to the mask confidence:

P = { pi |m
c
i > α }. (1)

We use the mask Hungarian algorithm[20] to assign labels for
some proposals with the loss item defined as:

Lm = λclsLcls + λdiceLdice + λcateLcate , (2)

where Lcls is the CrossEntropy loss between predicted and truth
labels, and Ldice is the dice loss between predicted and target
masks. Lcate is a 0-1 loss, which is used to distinguish foreground-
background to exclude matchings between thing and stuff. λcls ,
λcls , and λcls are the weight coefficients for each loss item.

By introducing more instance proposals, the number of matched
instances is increased. According to the different utilization ways
of these additional proposals, we design two matching strategies.
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Step-by-Step Matching. As illustrated in Figure 5 (top), we first
conduct direct matching for predicted segmentation results. If
there exist some truth instances not matched, continual match-
ing from the remaining proposals is conducted until all-matched.
This scheme ensures full utilization of training samples while main-
taining the priority of prediction instances, making it a reliable
matching scheme. However, this approach requires the panoptic
head not only to obtain the segmentation results but also to re-
tain the remaining proposals, which will lead to an increase in
computational and storage resources.
Proposal Matching. In this matching scheme, we abandon the
segmentation results predicted by the panoptic head and only use
the instance proposals for matching, as shown in Figure 5 (bottom).
Since the number of proposals is much larger than the number of
ground truth instances, this method ensures all-matching. With
proposal confidence constraints, this approach can also be a reliable
matching scheme. Since this scheme is not required segmentation
results calculated by an additional model component Panoptic Fu-
sion Head, the computation is reduced.

Under the confidence constraint (Eq. 1), the proposal matching
strategy is a simpler and more effective matching method. With
this approach, we can further simplify the acquisition of initial
features for the input of the message-passing network. Since the
proposals extracted from the MaskHead inherently contain feature
information of instances, we can directly input these features into
the message-passing network. This method has three advantages:
1) Low computation: In proposal matching, we replace the predicted
instances with proposals, and similarly, we can also replace RoI
features with proposal features, thus significantly reducing the
computation; 2) Low cumulative error: Additional feature extraction
modules are often based on segmentation results, which inevitably
leads to cumulative error. However, proposal features are directly
extracted from the feature maps in the panoptic head, without
any predictions, thus alleviating the cumulative error problem; 3)
High quality: As a model dedicated to panoptic segmentation, the
proposal features extracted from the panoptic head should contain
more accurate instance representation information.

Concretely, for any panoptic heads, we extract proposal features
from the MaskHead, which contain mask and visual information.
Then, we use multi-layer perceptron to de-noise these features.

ei = MLP(qi ), ri→j = MLP(ei ⊕ ej ), (3)

where qi represents the proposal feature of entity i . ei and ri→j
denote the initial entity and relation features respectively.

Through Eq. 3, we can easily unify the feature representation of
instances and relations, and input these initial features into some
popular message-passing networks, e.g. VCTree and Transformer,
to obtain predictions and conduct training. In summary, within the
training pipeline, we merely adjust the instance matching scheme
and the method for acquiring initial features, enabling us to fully
and effectively harness the samples for model training.

3.4 Relation-Constrained Panoptic Scene
Graph Generation

In section 3.2, we explain that the original framework would lead to
incomplete scene graph predictions during inference, and the key to
alleviating this problem is to recovermore valid instances. As shown

Algorithm 1 Relation-Constrained Segmentation Algorithm

Input:mc : mask confidence;m: mask prediction; rc : relation
confidence; l : label prediction;
Output:M ∈ Rw×h : Segmentation Result;
1: Initial M = 0, A = [0]. A is used to statistic each instance’s

mask area.
2: Extract the highest relation confidence for each instance pro-

posal: rc∗i =max{rck→j |k == i or j == i}

3: Calculate the coverage confidence of each instance proposal:
ci =m

c
i ∗ r

c∗
i , and then sorted c

4: for ci in c do
5: ai =mi & (M == 0)
6: if area(ai )

area(mi )
> ϵ then

7: M[ai ] = li
8: A[i] = area(ai )
9: else if rc∗i > δ then
10: mi − ai → aBi , B is the set of covered instances
11: for j ∈ B do

12: if area(a ji )
A[j] < τ then

13: A[j] = A[j] − area(a
j
i )

14: ai = ai & a
j
i

15: else
16: continue
17: end if
18: end for
19: M[ai ] = li
20: end if
21: end for
22: returnM

in Figure 3 (left), for the panoptic head, incomplete segmentation
mainly stems from two reasons: 1) It is covered by other instances
with higher confidence, e.g. skis; 2) The confidence of the instance
mask is lower than the designed threshold, so it is discarded, e.g.
mountain-merged and backpack. However, due to the lack of extra
attributes, the panoptic head is hard to deal with mask selection
in these cases. In order to achieve this goal, we propose a method
that uses the relation prediction results to recover the rest valid
instances, thus generating a more complete scene graph.

We first extract high-confidence proposals from the panoptic
head through Eq. 1. Each proposal typically contain four types of
information: mask confidence (mc ), mask prediction (m), label pre-
diction (l), and proposal feature (q). Then, we input the proposal
features into a message-passing network to obtain relation confi-
dence (rc ) and relation prediction (r ). Finally, we input all instance
prediction information and relation prediction information into a
unify relation-constrained segmentation algorithm framework to
get a relation-prior segmentation results, as shown in Figure 2.
Relation-Constrained Segmentation Algorithm. We present
our proposed algorithm in Algorithm 1, a mask-wise merging
method that accepts mc , m, l , and rc as input. First, we extract
the relation candidate with the highest confidence corresponding
to each instance proposal (rc∗ in Line 2) and combine it with the



MM ’23, October 29-November 3, 2023, Ottawa, ON, Canada Yang et al.

Panoptic Head Model SGDet PQ Inference
TimeR@20 R@50 R@100 mR@20 mR@50 mR@100 hR@20 hR@50 hR100

PSGTR†[46] 25.4 27.6 27.7 15.2 16.8 16.8 19.0 20.9 20.9 34.0 0.230
PSGFormer†[46] 17.7 19.3 19.6 14.4 16.6 16.9 15.9 17.9 18.2 41.2 0.175

Panoptic FPN
[17]

VCTree 20.6 22.1 22.5 9.7 10.2 10.2 13.2 14.0 14.0 40.3 0.132
VCTree+Ours 22.3+1.7 24.2+2.1 24.6+2.1 11.0+1.3 11.5+1.3 11.8+1.6 14.7+1.5 15.5+1.5 15.9+1.9 40.7+0.4 0.142
Transformer 20.3 21.9 22.5 9.2 10.4 10.7 12.7 14.1 14.5 40.3 0.099
Transformer+Ours 22.7+2.4 24.3+2.4 25.0+2.5 10.9+1.7 12.0+1.6 12.4+1.7 14.7+2.0 16.0+1.9 16.6+2.1 40.8+0.5 0.118

Panoptic SegFormer
[28]

VCTree 26.4 28.7 29.4 12.3 13.2 13.4 16.8 18.1 18.4 49.4 0.179
VCTree+Ours 29.1+2.7 30.9+2.2 31.4+2.0 13.8+1.5 14.5+1.3 14.7+1.3 18.7+1.9 19.7+1.6 20.0+1.6 49.7+0.3 0.201
Transformer 26.3 28.4 29.1 12.4 13.2 13.4 16.9 18.0 18.4 49.4 0.159
Transformer+Ours 28.7+2.4 30.9+2.5 31.6+2.5 14.2+1.8 14.9+1.7 15.0+1.6 19.0+2.1 20.1+2.1 20.3+1.9 49.5+0.1 0.181

Mask2Former
[5]

VCTree 27.0 29.2 29.9 13.5 14.3 14.5 18.0 19.2 19.6 50.8 0.189
VCTree+Ours 30.8+3.8 33.5+4.3 34.4+4.5 15.4+1.9 16.3+2.0 16.6+2.1 20.5+2.5 21.9+2.7 22.4+2.8 50.9+0.1 0.197
Transformer 27.1 29.4 30.0 13.1 14.2 14.5 17.7 19.1 19.5 50.8 0.141
Transformer+Ours 29.7+2.6 32.4+3.0 33.3+3.3 16.5+3.4 17.6+3.4 17.9+3.4 21.2+3.5 22.8+3.7 23.3+3.8 51.0+0.2 0.155

Table 2: Comparison on the PSG dataset with existing baseline networks based on ResNet-50 backbone. † means the result is
produced on unique segmentation results rather than single triplet for equal comparison. The best is highlighted in bold.

mask confidence to obtain the coverage confidence (c) for segmenta-
tion (Line 3). This step enhances the coverage priority of instance
proposals with high relation confidence. Then, the algorithm con-
ducts mask-wise merging with coverage confidence priority. We
calculate the disjoint region between the proposal mask and cur-
rent mask results and perform mask coverage only if the region
area is close to the original predicted mask area, controlled by the
threshold ϵ (Line 6). Moreover, we introduce an additional decision
branch to prevent instances from being covered by their interactive
ones. We enforce recovery of instances with high-confidence rela-
tion, e.g. rc∗i > δ in Line 9. To ensure that the compulsory recovery
instances do not damage the original segmentation results, in Line
12, we set a threshold to further constrain the recovery conditions.
We only execute the coverage if the ratio of the covered part to the
existing mask area of the instance does not exceed τ . Although our
algorithm appears complex, it has proven to be an effective and
general operation for various panoptic heads in our experiments.
Since most relation predictions tend to be redundant, the thresholds
set in this algorithm are crucial for reducing noise in the relations.

After obtaining a panoptic segmentation result under relation-
constrained, some proposals are discarded, so we need to eliminate
the relations containing useless ones, so as to obtain the final scene
graph. In Figure 4 (bottom), we show the advantages of relation-
constrained segmentation. In the panoptic head, skis shows lower
confidence than surrounding instances snow, which exactly covers
the region of skis. At this time, by interacting with the surrounding
instances, person-skis produces a high-confidence relation predic-
tion, so we can recover skis to achieve better segmentation and
more complete scene graph prediction.

4 EXPERIMENTS
4.1 Experimetal Setup
Dataset. We evaluate our proposed framework on the only large-
scale PSG dataset[46]. PSG conducts relation annotation based on
the COCO[30] dataset, which contains 133 entity classes, including
80 thing and 53 stuff classes. PSG has 47874 images with relation
annotations, including 45697 for training and 2177 for testing.

Tasks and Evaluation Metrics. We focus on solving the SGDet
task, which detects the whole scene graph from scratch. To estimate
the performance, we usemean Recall@K (mR@K), Recall@K
(R@K) and harmonic Recall (hR@K)[16, 50] as relation evalua-
tionmetrics andPQ as segmentation evaluationmetric. ThehR@K
is defined as the harmonic mean of mR@K and R@K, which has a
healthy balance between the head and the tail class performance.
We also estimate the inference speed of the model for each image.
Implementation Details: We test three different types of panop-
tic heads to verify the effectiveness of our proposed frame-
work, including Panoptic FPN[17], Panoptic SegFormer[28], and
Mask2Former[5], whose parameters are frozen during training. For
all panoptic heads, We set α = 0.5, 0.7, 0.3 to filter the proposals
for three panoptic heads, respectively. In proposal matching, we
set λcls = 1.0, λdice = 2.0 and λcate = 1.0. In relation-constrain
segmentation algorithm, ϵ , δ , and τ are set to 0.9, 0.01, and 0.1,
respectively. The whole training contains 15 epochs. The batch
size is set to 8 and the initial learning rate is 3.0 × 10−2 with being
decayed by a factor of 10 at the 9th epoch and 12th epoch. All our
experiments are conducted using 2 RTX A5000 GPUs.

4.2 Performance Comparisons
In this section, we perform the quantitative comparison with ex-
isting frameworks including PSGTR and PSGFormer[46]. We ex-
periment with three different panoptic heads, including Panoptic
FPN[17], Panoptic SegFormer[28], and Mask2Former[5], to verify
the universality and effectiveness of our proposed framework.

Table 2 shows the superiority of our framework under
two common-used baseline networks, i.e., VCTree[37] and
Transformer[40]. When VCTree is used as the message passing
network, our framework has an average increase of 10.6%, 12.9%,
and 11.9% across R@K, mR@K, and hR@K on three panoptic heads.
Similar improvements also take place on the Transformer, which
well explain the general effectiveness of our proposed framework.
It is worth noting that, although our framework provides more
proposals during the relation prediction, it shows close inference
speed compared to traditional ones. This is mainly because our
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Module SGDet PQ Inference
TimePM PF RC R@20 mR@20 hR@20

Baseline 27.1 13.1 17.7 50.8 0.141
✓ 28.0 13.6 18.3 50.8 0.141
✓ ✓ 28.1 16.0 20.4 50.8 0.106
✓ ✓ ✓ 29.7 16.5 21.2 51.0 0.155

Table 3: Ablation study of the framework components with
Mask2Former as panoptic head andTransformer as baseline
network. Proposal matching (PM) only occurs in the training
phase, so it does not impact PQ and inference speed.

Matching
Methods

SGDet

R@20 / 100 mR@20 / 100 hR@20 / 100

Direct Matching 27.1 / 30.0 13.1 / 14.5 17.7 / 19.6
Step by Step 28.7 / 31.3 14.6 / 15.5 19.4 / 20.7

Proposal Matching 28.1 / 30.9 16.0 / 16.9 20.4 / 21.8

Table 4: Comparisonwith different instancematchingmeth-
ods without relation-constrained.

α
SGDet PQ Inference

TimeR@20 mR@20 hR@20

None 28.11 15.95 20.35 50.85 0.106

0.5 30.06 16.68 21.45 50.46 0.199
0.6 29.95 16.52 21.29 50.75 0.188
0.7 29.67 16.46 21.17 51.05 0.155
0.8 28.99 16.22 20.80 50.84 0.145

Table 5: Performance of different value choices of α to con-
trol the number of proposals in the inference stage based on
Mask2Former. “None" means relation-constrained method
is unused but remaining proposal matching scheme.

framework designs a more simple and effective feature extraction
step, which does not require extra RoI calculation and has a lower
feature dimension of proposals. Meanwhile, the framework does
not require segmentations in the panoptic head, instead conducts
scene graph inference and panoptic segmentation simultaneously
thus significantly improving the efficiency of model inference.

4.3 Ablation Study and Model Analysis
We further conduct a detailed ablation study over components in
our framework and show the performance gain in Table 3. Base-
line denotes the common PSG framework with Mask2Former as
panoptic head and Transformer as baseline network. “PM" and
“PF" are the abbreviation of Proposal Matching and Proposal Feature,
respectively. “RC" represents the Relation-Constrained segmentation.
Analysis on components. As shown in Table 3, we quantitatively
verify the effectiveness of each component. Compared to the base-
line, utilizing the proposed PM scheme achieves an improvement
of 3.5% on average. It convinces that the proposed PM alleviates the
problem of mismatching caused by incomplete segmentations. We

δ
SGDet PQ

R@20 mR@20 hR@20

0.001 29.67 16.48 21.19 50.98
0.01 29.67 16.46 21.17 51.05
0.1 29.58 16.42 21.12 50.74
0.2 29.23 16.18 20.83 50.47

Table 6: Performance of different value choices of δ to con-
trol the number of compulsory recovery instances.

further use proposal features to replace the RoI features obtained
from RoI feature eatraction module. Compared with the RoI fea-
tures (i.e., baseline in the 1st row), PF shows a huge performance
improvement with 9.8% in relation prediction and 24.8% in inference
speed. We argue that extracting extra features in the framework is
proven not only to be unnecessary for better scene graph generation
but also introduces large requirements on computation resources.
Furthermore, We also emphasize the auxiliary role of relations for
segmentation. Based on the designed relation-constrained segmen-
tation algorithm, the performance achieves further improvements
of 5.7%, 3.1%, and 0.4% on R@K, mR@K, and PQ, separately. While
the improvement in PQ is not obvious, the recall has achieved
great progress. Relation constrain may recover some unremarkable
instances, which still present large effects on segmentation perfor-
mance. For the relation prediction, the increase in the number of
segmentation instances directly increases the integrity of relation
prediction, consequently improving R@K and mR@K.
Discussion on matching scheme. We compare three instance
matching strategies in Table 4. Due to the waste of training sam-
ples, direct matching shows the worst performance. Although step-
by-step matching scheme shows some improvement, it is not as
significant as the proposal matching scheme. This scheme defaults
to the fact that the matching priority of segmentations is always
higher than the rest proposals. So when the panoptic head produces
error segmentation results, this scheme will confuse matching.
Value choice of proposal confidenceα . In the training phase, the
selection of proposal confidence α , which controls the number of
instances proposals in the message-passing network, is unnecessary
due to the ground truth constraint. But in the inference phase, the
value of α is quite important. We conduct a discussion on values
of α based on Mask2Former. As shown in Table 5, a small value
generates too many proposals, which seriously affects the inference
speed of the model and hurts the segmentation results. A large value
means fewer instance proposals, resulting in unobvious benefits.
We find that α = 0.7 has a better overall performance. Due to the
difference between panoptic heads, in practice, we choose α = 0.5
for Panoptic FPN and 0.3 for Panoptic SegFormer.
Relation confidence δ for instance recovery. In the relation-
constrained panoptic segmentation algorithm, we design a thresh-
old δ to control the number of compulsory recovery instances. We
experiment with different value choices of δ . As shown in Table
6, δ = 0.01 shows the best overall performance. Small values will
recover many unnecessary instances, which hurts the segmenta-
tion performance. Large values will cause some instances to be
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Model

Metric Perturb. No Perturb. FGSM on Panoptic Head FGSM on SAM

PQ hR@20 PQ hR@20 PQ hR@20 PQ hR@20

Mask2Former [5]
P 50.8 18.9 45.6 16.4 - - 43.6 15.9
P+RC 51.0 19.8 46.3 17.1 - - 44.1 16.7

Panoptic
SegFormer [28]

P 49.4 16.6 - - 44.0 13.7 41.7 13.3
P+RC 49.8 17.4 - - 44.7 14.6 42.5 13.9

Table 7: Performance against adversarial attacks under
motifs[49] baseline models. P = PM+PF.

unable to recover, so all related relations can’t be predicted, result-
ing in a significant decline in both the relation prediction and the
segmentation performance.
Robustness against segmentation noises. The robustness of
model against input noisy consistently attacks significant attentions,
especially regarding its resilience against adversarial attacks [29].
To discuss the robustness of our proposed method, we utilize the
FGSM [11] adversarial attack method to generate noisy images
based on the MaskFormer and SegFormer models, separately. These
noisy images are then inputted into the corresponding attack mod-
els to generate scene graphs. Additionally, we perform scene graph
generation using the noisy images obtained through adversarial
attacks on SAM. Our observations reveal that while the adversarial
attack does diminish the segmentation (PQ) and PSG (hR@20) per-
formance, the RC consistently mitigates the impact to some extent,
demonstrating resilience against adversarial attacks. Specifically,
in the case of the large model SAM [18], although experiencing a
more substantial decline in performance, the proposed model still
exhibits the pull-back effect and showcases robustness for the large
model (as shown in Table 7).

4.4 Qualitative Analysis
We visualize several panoptic scene graph prediction results in
Figure 6, which show that our proposed framework achieves more
complete predictions. In each example, the above and below scene
graphs show the results predicted by the original and our proposed
framework, respectively. By comparing these results, it is obvious
that our framework realizes a more complete panoptic segmenta-
tion and scene graph prediction from two aspects: 1) Recovering
instances covered by high-confidence ones. As shown in the
top image, paper-merged is covered by refrigerator in the origi-
nal segmentation results. However, in our framework, we input
paper-merged as a proposal into the message passing network and
generate a reliable relation prediction by interacting with refriger-
ator. Therefore, the relation-constrained segmentation algorithm
recovers paper-merged, thus increasing the triplet paper-merged-on-
refrigerator, achieving a more complete scene graph prediction; 2)
Retaining un-mask instances with high-confidence relation
prediction. Still using the top image as an example, bottle is a low-
confidence proposal in the panoptic head, which is discarded in
the original segmentation results. However, in our framework, we
take relation as another basis for whether to mask, and bottle-on-
cabinet-merged produces a high-confidence relation prediction, so
bottle is retained. Other images illustrate the same phenomenon,
and the region marked in red shows the ground truth relations that
the original framework can’t predict.
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Figure 6: Visualization results of panoptic scene graphs gen-
erated by the current PSG framework (above) and our frame-
work (below). Explored extra instances (purple) and relation
(green) predictions are highlighted in bold.

5 CONCLUSION
In this paper, we rethink the original SGG framework under panop-
tic segmentation. By analyzing the differences between the SGG task
and the PSG task, we devise a more effective panoptic scene graph
generation framework. Considering the non-overlap requirement
of the masks, we design distinct pipelines for training and inference.
In the training pipeline, we introduce a novel proposal matching
strategy that utilizes proposals extracted from the off-the-shelf
panoptic head for label alignment instead of using deterministic
segmentation results, thereby ensuring the all-matching of training
samples. Subsequently, by capitalizing on the proprietary model’s
exceptional expressiveness, we directly input the proposal features
into the message-passing network, consequently reducing the com-
putation required for feature extraction. In the inference pipeline,
we develop a versatile and efficient algorithm that reconstructs the
process of generating segmentation results from proposals through
relation constraints, predicting more comprehensive scene graphs
by recovering more valid instances. The results show that our pro-
posed framework not only improves inference efficiency but also
achieves outstanding performance.
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